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Control of chaos in conservative flows

Liu Zonghua
CCAST (World Laboratory) P.O. Box 8730, Beijing, 100080, People’s Republic of China;

Graduate School, China Academy of Engineering Physics, P.O. Box 8009, Beijing, 100088, People’s Republic of China;
and Department of Physics, Guangxi University, Nanning, 530004, People’s Republic of China

Chen Shigang
Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088, People’s Republic of China

~Received 2 December 1996; revised manuscript received 15 January 1997!

The present paper discusses the control of chaos in conservative flow. Two methods are introduced, depend-
ing on whether the perturbations to the state are variables introduced on a proportional or an additive fashion.
The maximum Lyapunov exponents of new creating periods are given. The method is robust against external
noise.@S1063-651X~97!13406-7#

PACS number~s!: 05.45.1b, 03.20.1i, 46.10.1z
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I. INTRODUCTION

Nowadays, a number of methods have been proposed
control of chaos@1–10#. Pioneering is the Ott-Grebogi
Yorke ~OGY! method@1#. Shortly afterwards many relate
methods were presented, such as the modified OGY met
@2,3#, the occasional proportion feedback~OPF! or conven-
tional linear feedback methods@4,5#, the entrainment and
migration control techniques@6,7#, and our continuous pa
rameter adjusting method@8,9#, etc. The OGY and its modi
fied methods convert chaotic motion into that of the cong
ous unstable periodic orbit by applying small, tim
dependent perturbations to a system parameter. The OPF
conventional linear feedback methods are used to contr
chaotic system with a trial and error feedback gain, and
system remains nonlinearity. The entrainment and migra
control techniques transfer one attractor to another b
switching controller. Our method can direct nonlinear d
namic systems to any desired orbit. However, all these m
ods are designed for dissipative systems. For the Ha
tonian chaos, only the modified OGY method is found@10#.
This method has a disadvantage in practical applicat
which needs to know details about the location of the tar
unstable periodic orbit. In this paper, we consider two kin
of periodic impulsive methods of controlling conservati
flow. One applies additive perturbations on the system v
ables and the other applies multiplicative perturbation on
system variables. These methods, which are not necessa
know more details of the system, are used successfull
dissipative systems@11–13#.

Sprott @14# made a systematic examination of gene
three-dimensional autonomous ordinary differential eq
tions with quadratic nonlinearities, and uncovered 19 disti
simple examples of chaotic flows, with either five terms a
two nonlinearities, or six terms and one nonlinearity. On
caseA is a volume-conserving system and the others
dissipative systems with strange attractors. In this contri
tion, we use caseA as an example to illustrate how the p
riodic impulsive method works.

The present paper is organized as follows. In Sec. II,
additive impulsive methods are investigated and caseA is
561063-651X/97/56~1!/168~4!/$10.00
for

ds

-

nd
a
e
n
a
-
h-
il-

n,
t
s

i-
e
to
in

l
-
t
d

e
-

e

used as the test bed. The regions of the additive pertu
tions, in which period-1 and period-2 are controlled, a
given. Moreover, the maximum Lyapunov exponent is c
culated. In Sec. III, the multiplicative impulsive method
studied and some periodic windows are given. Finally,
Sec. IV the effects of different types of noise on the tw
methods are considered and the main conclusions are lis

II. ADDITIVE IMPULSIVE METHOD

The trajectory of the conservative flow runs in pha
space. We expect to find a proper Poincare´ section so that the
behavior of the system will be simplified on the sectio
Generally speaking, the points on the section will not
identity in the chaotic band. However, if a periodic pulse
given on the section, some points of the Poincare´ section will
become identity. In other words, we create a new perio
orbit. In the present method we add a perturbation to
system variables,

xi85xi1g i ~1!

where xi represents thei th variable of the system on th
Poincare´ section andg i , which can be positive or negative
regulates the strength of the pulse. One can think of a p
tical implementation of this idea in the case of a bat
chemical reactor consisting of the injection of some amo
of either an insert compound or one of thei components.

As an application, we use caseA @14# as an example

ẋ5y,

ẏ52x1yz, ~2!

ż512y2.

Its time-reversal invariance is evident from the equatio
Reference@14# pointed out that the three Lyapunov exp
nents are 0.014, 0, and20.014. It is well known that the sum
of the three exponents is the average rate of fractional
ume expansion along the trajectory. So caseA is a volume-
168 © 1997 The American Physical Society
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56 169CONTROL OF CHAOS IN CONSERVATIVE FLOWS
conserving system. In order to confirm this point, we cal
late the divergence of the flow, which is the trace of t
Jacobian matrixJ

1

V

dV

dt
5TrJ5

] ẋ

]x
1

] ẏ

]y
1

] ż

]z
5l11l21l35z. ~3!

Obviously, the trace depends on the variablez. Choosing
different initial points ~except for the original point!, and
observing the evolution of variablez, we find that the vari-
ablez finally oscillates within a region surrounding zero a
its average is zero. Hence, caseA is a really conservative
system. Figure 1~a! shows the Poincare´ section of Eq.~2! in
which points are plotted where the trajectory punctures
z50 plane for various initial conditions. The quasiperiod
orbits are surrounded by a chaotic region. Figure 1~b! shows
a trajectory in phase space for an initial point~0.0, 5.0, 0.0!
when the transient process is discarded. Throughout this
per we will always use~0.0, 5.0, 0.0! as an initial point.

Adding periodic pulses to Eq.~2!, we have

ẋ5y1g1d~z!żu~ ż!,

ẏ52x1yz1g2d~z!żu~ ż!, ~4!

ż512y2,

where d(z) is Dirac’s d function, g1 and g2 regulate the
intensity of periodic pulses, andu( ż) denotes the direction o
crossing Poincare´ section. In order to avoid two directions o
crossing the planz50, we define the Poincare´ section by
that z50 and ż.0. That is u( ż)511 if ż.0 and
u( ż)50 if ż,0. Restricting the intensity of periodic pulse
g1 andg2 in the range20.5–0.5, we can find out the region

FIG. 1. ~a! Poincare´ section atz50 for the conservative chaoti
caseA; ~b! a trajectory in phase space for initial point~0.0, 5.0, 0.0!
when the transient process is discarded.
-

e

a-

in which the period-n exists. For finding the regions o
period-n, we let the (n11)th point of the Poincare´ section
identify with the first point. The set of equations~4! has been
integrated by using a stable fixed-step fourth-order Run
Kutta method with a step size ofDt50.01 time units. The
maximum allowable error is 1026. Figure 2 shows the result
where the shadows in~a! denote the regions of period-1 an
the shadows in~b! denote those of period-2. Similarly, w
can find the regions of other higher periods. This implies t
the present method works by creating a new dynamical s
tem that hasg i as a system parameter. Choosing one a
trary point from the shadows of Fig. 2, for exampl
g150.3 andg2520.3, we can get the period-1 orbit. Th
results show in Fig. 3 when the transient process is thro
away. The noncontinuous character of the stabilized flow
the crossing can be clearly appreciated.

FIG. 2. The regions of period-1 and period-2 wheng1 andg2

vary in range20.5;0.5. ~a! regions of period-1,~b! regions of
period-2.

FIG. 3. The stabilized period-1 orbit for additive perturbatio
method ing150.3 andg2520.3.
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170 56LIU ZONGHUA AND CHEN SHIGANG
From Fig. 2 one can see that the shadows do not con
the lines ofg150 or g250. It means that the periodic orb
cannot be found by only adding periodic pulses on thex
variable ory variable of Poincare´ section. Our numerica
calculation confirms this point. On the other hand, the fin
size of shadows in Fig. 2 illustrates that the period-1
period-2 is stable in some range ofg1 and g2. In order to
confirm this point, we calculate the Lyapunov exponents
Eq. ~4!. We know that continuous flows necessarily have
zero Lyapunov exponent corresponding to the direction
the flow. Hence, we only need to calculate the maxim
Lyapunov exponent for the two-dimensional~2D! Poincare´
map. Figure 4 shows the maximum Lyapunov expon
wheng1520.4;0 andg2520.3, wherelmax is negative
wheng1 is in the range of periodic windows for Fig. 2, bu
positive wheng1 is out of the range of periodic windows
Thus the new creating periodic orbits are stable~attracting!.
This is confirmed by using different initial conditions an
there is a reasonably large basin of attraction. It implies t
the conservative flow becomes dissipative when the perio
pulses is added.

III. MULTIPLICATIVE IMPULSIVE METHOD

The second method is defined by

xi85xi~11g i ! ~5!

And the perturbation is applied at the crossing with the Po
carésection, wherexi represents thei th variable of the sys-
tem, andg i defines the strength of the pulse for variab
xi , that can be either positive or negative. In other words,
conservative flow is controlled by changingxi in such a way
that a proportional feedback is applied on the Poincare´ sec-
tion in the form of pulses. The idea is how to choose suita
values of theg i so that the system becomes periodic and
regular orbits are approximate to those of the original s
tem. This method has some difference from Ref.@11# where
an arbitrary time scale for the perturbations is introduced

Making the same Poincare´ section and the same initia
point with the method in Sec. II, we can write Eq.~2! as
follows:

FIG. 4. The relation between the maximum Lyapunov expon
lmax and the intensity of perturbationg1, whereg2520.3.
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ẋ5y1gxd~z!żu~ ż!,

ẏ52x1yz, ~6!

ż512y2,

where the meaning ofg,d, andu are just the same as that o
Eq. ~4!. Different from Sec. II, we only applied periodi
pulses to thex variable. Our numerical calculation show
that it is the same when only periodic pulses are applied
they variable. Now we letg vary from21.0 to 1.0. We get
some periodic windows, for example, a period-1 windo
when g521.0–20.4, a period-3 window when
g50.08–0.20, a period-2 window wheng50.21–0.52, a
period-1 window wheng50.53–0.65, and high-periodic
states wheng50.06–0.07, 0.66–0.67, and 0.69–0.71. Figu
5 shows two typical periodic orbits. It is evident that th
points of the stabilized periodic orbit of the Poincare´ section
do not belong to the original chaotic set, but are rather so
how shifted. Making the same calculation as in Sec. II,
can get the maximum Lyapunov exponentlmax for the 2D
Poincare´ map in this case. Figure 6 is the result wh
g50–0.70, wherelmax is negative wheng is in the periodic

t
FIG. 5. ~a! The stabilized period-2 orbit for multiplicative per

turbation method ing50.3; ~b! the stabilized period-3 orbit for
multiplicative perturbation method ing50.2.

FIG. 6. The relation between the maximum Lyapunov expon
lmax and the intensity of perturbationg.
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56 171CONTROL OF CHAOS IN CONSERVATIVE FLOWS
windows and high-periodic states, but positive wheng is out
of the range. It illustrates that the new creating periodic o
is stable.

IV. EFFECTS OF NOISE AND CONCLUSION

In order that it can be effectively considered that a giv
chaos suppression is useful, having in mind practical ap
cations, one must first check whether the method is rob
against the presence of several sources of external nois
this section, we consider the Gaussian white noisej having
zero mean and a standard deviation equal to one, gene
by using the Box-Mu¨ller method @15#. We also introduce
additive noise in the form,

xi85xi1rj, ~7!

and multiplicative noise in the form,

xi85xi~11rj!, ~8!

wherer denotes the intensity of external noise. This noise
applied at each Runge-Kutta integration step.

Figure 7~a! shows the result obtained by considering t
presence of multiplicative noise for the period-1 in Fig.
and Fig. 7~b! shows the result obtained by considering t
presence of multiplicative noise for period-2 in Fig. 5~a!. For
the case of additive noise, it is just the same. Comparing
7~a! with Fig. 3, and Fig. 7~b! with Fig. 5~a! without noise,
respectively, we can see that the orbits having noise bec
rough, but they remain within a small region surrounding
noise-free orbit and do not wander over thex-y plane. So
they are still periodic. This shows that the periodic impuls
method is robust against weak external noise.

In conclusion, two versions of chaos suppression meth
of conservative flow through changes in the system varia
have been discussed and applied to caseA. Although this
method was first presented for the dissipative system@11–
13#, our results show that it is effective in conservative flo
The methods work by reducing the system dimensiona
through a suitably chosen Poincare´ cross section of the sys
tem, i.e., a plane that is perpendicular to the flow. Two v
sions of the methods have been implemented, namely
considering both additive and proportional changes in
it

n
li-
st
In

ted

s

,

g.

e
e

ds
s

.
y

-
by
e

system variables, where the first is independent of the p
tion of the system on the Poincare´ section.

The possibility of choosing different periodic behavio
within these methods has been shown. For the multiplica
impulsive method, the periodic orbit can be controlled
only adding perturbation to one variable, while for the ad
tive impulsive method, the periodic orbit can only be co
trolled by adding perturbations to two variables at the sa
time. Furthermore, for producing a stable periodic orbit t
intensities of perturbation applied between multiplicative a
additive fashion are different. So the results somewhat
pendent on the nature of the perturbation. On the other h
this paper has shown its robustness under the presenc
some source of external noise. The negative maxim
Lyapunov exponents illustrate that the periodic orbits crea
by the periodic impulsive methods are stable.
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FIG. 7. Effect of noise in the presence of multiplicative nois
~a! The stabilized period-1 orbit for additive impulsive method co
responding to Fig. 3, where the intensity of noise is 1.031023; ~b!
the stabilized period-2 orbit for multiplicative impulsive metho
corresponding to Fig. 5~a!, where the intensity of noise is
5.031024.
et-
ng
@1# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# Y. Braiman and I. Goldhirsch, Phys. Rev. Lett.66, 2545
~1991!.

@3# Y. Liu and J. R. R. Leite, Phys. Lett. A185, 35 ~1994!.
@4# E. R. Hunt, Phys. Rev. Lett.67, 1953~1991!.
@5# K. Pyragas, Phys. Lett. A 170, 421~1992!.
@6# E. A. Jackson, Phys. Lett. A151, 478 ~1990!.
@7# E. A. Jackson, Physica D50, 341 ~1991!.
@8# Liu Zonghua and Chen Shigang, Phys. Rev. E55, 199 ~1997!.
@9# Liu Zonghua and Chen Shigang, Chin. Phys. Lett.14, 85
~1997!.
@10# Y. C. Lai, M. Ding, and C. Grebogi, Phys. Rev. E47, 86

~1993!.
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Chaos6, 1351~1996!.
@14# J. C. Sprott, Phys. Rev. E50, R647~1994!.
@15# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling, Numerical Recipes: The Art of Scientific Computi
~Cambridge University Press, New York, 1986!.


