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The present paper discusses the control of chaos in conservative flow. Two methods are introduced, depend-
ing on whether the perturbations to the state are variables introduced on a proportional or an additive fashion.
The maximum Lyapunov exponents of new creating periods are given. The method is robust against external
noise.[S1063-651X97)13406-1

PACS numbgs): 05.45:+b, 03.20+i, 46.10:+2z

[. INTRODUCTION used as the test bed. The regions of the additive perturba-
tions, in which period-1 and period-2 are controlled, are
Nowadays, a number of methods have been proposed f@iven. Moreover, the maximum Lyapunov exponent is cal-
control of chaos[1-10. Pioneering is the Ott-Grebogi- culated. In Sec. I, the multiplicative impulsive method is
Yorke (OGY) method[1]. Shortly afterwards many related Studied and some periodic windows are given. Finally, in
methods were presented, such as the modified OGY metho@$C. IV the effects of different types of noise on the two
[2,3], the occasional proportion feedbat®PP or conven- Methods are considered and the main conclusions are listed.
tional linear feedback method4,5], the entrainment and
migration control techniquegs,7], and our continuous pa- [l. ADDITIVE IMPULSIVE METHOD
rameter adjusting methd®,9], etc. The OGY and its modi- . . .
fied methods convert chaotic motion into that of the congru- The trajectory of '_[he conservatl\{g ﬂOW. runs in phase
ous unstable periodic orbit by applying small, time- space. We expect to find a Proper If’om_c;eetlon S0 that th_e
dependent perturbations to a system parameter. The OPF apghavior of the system will be simplified on the section.
conventional linear feedback methods are used to control engral]y speakmgz the points on the.' section W'” not t_Je
chaotic system with a trial and error feedback gain, and th lentity In the chgonc band. However, ifa Eenod!c pul_se IS
system remains nonlinearity. The entrainment and migratiorﬁ"ven on the section, some points of the Poincetion will

control techniques transfer one attractor to another by Qe;on:e |ﬂentlty. In otherhwgrds, Wdedcreate a Eevy pe”Odh'C
switching controller. Our method can direct nonlinear dy-O'P't- In the present method we add a perturbation to the

namic systems to any desired orbit. However, all these metrYStem variables,
ods are designed for dissipative systems. For the Hamil-
tonian chaos, only the modified OGY method is foudd].

This method has a disadvantage in practical application _ . .
which needs to know details about the location of the targe herex; represents théth variable of the system on the

unstable periodic orbit. In this paper, we consider two kinds oincaresection andy;, which can be positive or negative,
A . . . ““regulates the strength of the pulse. One can think of a prac-
of periodic impulsive methods of controlling conservative

X . . tical implementation of this idea in the case of a batch
flow. One applies additive perturbations on the system vari- : - L
chemical reactor consisting of the injection of some amount

ables and the other applies multiplicative perturbation on the', ~. :
' . f either an insert compound or one of theomponents.
system variables. These methods, which are not necessary 1o oo
As an application, we use cage[14] as an example

know more details of the system, are used successfully in
dissipative systemgl1-13.

X =Xty 1

Sprott [14] made a systematic examination of general X=Y,
three-dimensional autonomous ordinary differential equa- .
tions with quadratic nonlinearities, and uncovered 19 distinct y=—X+tyz 2
simple examples of chaotic flows, with either five terms and
two nonlinearities, or six terms and one nonlinearity. Only z=1-y?

caseA is a volume-conserving system and the others are

dissipative systems with strange attractors. In this contribu- Its time-reversal invariance is evident from the equations.

tion, we use cas@ as an example to illustrate how the pe- Reference 14] pointed out that the three Lyapunov expo-

riodic impulsive method works. nents are 0.014, 0, and0.014. It is well known that the sum
The present paper is organized as follows. In Sec. Il, thef the three exponents is the average rate of fractional vol-

additive impulsive methods are investigated and cse  ume expansion along the trajectory. So cAsis a volume-
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FIG. 1. (a) Poincaresection aiz=0 for the conservative chaotic
caseA; (b) a trajectory in phase space for initial po{6t0, 5.0, 0.0
when the transient process is discarded.

conserving system. In order to confirm this point, we calcu- ) 05 0 0.5
late the divergence of the flow, which is the trace of the ) ’
Jacobian matrix) (b) Yl

1dv ox a9y 9z FIG. 2. The regions of period-1 and period-2 whenpand vy,

var o=t 7y T T M TRt A=2 (3 vary in range—0.5~0.5. (a) regions of period-1(b) regions of
period-2.

Obviously, the trace depends on the variableChoosing

different initial points (except for the original point and  in which the periodh exists. For finding the regions of

observing the evolution of variable we find that the vari- periodn, we let the i+ 1)th point of the Poincarsection

ablez finally oscillates within a region surrounding zero and identify with the first point. The set of equatiof® has been

its average is zero. Hence, caBeis a really conservative integrated by using a stable fixed-step fourth-order Runge-

system. Figure () shows the Poincarsection of Eq(2) in Kutta method with a step size &t=0.01 time units. The

which points are plotted where the trajectory punctures thenaximum allowable error is IC. Figure 2 shows the results

z=0 plane for various initial conditions. The quasiperiodic where the shadows i@) denote the regions of period-1 and

orbits are surrounded by a chaotic region. Figut® $hows the shadows inb) denote those of period-2. Similarly, we

a trajectory in phase space for an initial pofit0, 5.0, 0.0 can find the regions of other higher periods. This implies that

when the transient process is discarded. Throughout this pghe present method works by creating a new dynamical sys-

per we will always us€0.0, 5.0, 0.0 as an initial point. tem that hasy; as a system parameter. Choosing one arbi-
Adding periodic pulses to Eq2), we have trary point from the shadows of Fig. 2, for example,
. o v1=0.3 andy,= —0.3, we can get the period-1 orbit. The
X=Yy+v16(2)26(2), results show in Fig. 3 when the transient process is thrown
away. The noncontinuous character of the stabilized flow at
y=—X+Yyz+y,8(2)26(2), (4)  the crossing can be clearly appreciated.
z=1— y2, z
. . 2 E
where 6(z) is Dirac’s é function, vy, and y, regulate the 0
intensity of periodic pulses, an#(z) denotes the direction of -2
crossing Poincarsection. In order to avoid two directions of 2
crossing the plare=0, we define the Poincarsection by 0 X > oY

that z=0 and z>0. That is 6(z)=+1 if z>0 and

6(z)=0 if z<0. Restricting the intensity of periodic pulses  FIG. 3. The stabilized period-1 orbit for additive perturbations
1 andy, in the range-0.5-0.5, we can find out the regions method iny;=0.3 andy,=—0.3.
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FIG. 4. The relation between the maximum Lyapunov exponent
Amax and the intensity of perturbatiop,, wherey,=—0.3. FIG. 5. (a) The stabilized period-2 orbit for multiplicative per-
turbation method iny=0.3; (b) the stabilized period-3 orbit for
From Fig. 2 one can see that the shadows do not contaifultiplicative perturbation method i=0.2.
the lines ofy;=0 or y,=0. It means that the periodic orbit

cannot be found by only adding periodic pulses on xhe 5<=y+ yx5(z)'zg('z),
variable ory variable of Poincaresection. Our numerical
calculation confirms this point. On the other hand, the finite y=—x+yz, (6)

size of shadows in Fig. 2 illustrates that the period-1 or
period-2 is stable in some range ¢f and y,. In order to
confirm this point, we calculate the Lyapunov exponents of

Eqg. (4). We know that continuous flov_vs necessarily h_ave Avhere the meaning of, 5, and 6 are just the same as that of
zero Lyapunov exponent corresponding to the direction otq_ (4). Different from Sec. II, we only applied periodic

the flow. Hence, we only need to calculate the maximumyses to thex variable. Our numerical calculation shows
Lyapunov exponent for the two-dimension@D) Poincare ¢ it s the same when only periodic pulses are applied to
map. Figure 4 shows the maximum Lyapunov exponentney variable. Now we lety vary from — 1.0 to 1.0. We get
when y,=—0.4~0 and y,=—0.3, wherek y,, is negative  some periodic windows, for example, a period-1 window
wheny, is in the range of periodic windows for Fig. 2, but \yhen y=-1.0—0.4, a period-3 window when
positive wheny, is out of the range of periodic windows. y=0.08-0.20, a perio,d—2 window whep=0.21-0.52, a
Thus the new creating periodic orbits are stafalttracting. period-1 window wheny=0.53-0.65, and high-periodic

This is confirmed by USing different initial conditions and states Wher"y=006—007 0.66—0.67. and 0.69—0.71. Figure

there is a rea_sonably large basin_of_attr_action. It implies_tha_g shows two typical periodic orbits. It is evident that the
the conservative flow becomes dissipative when the per'Od'Boints of the stabilized periodic orbit of the Poincaetion

pulses is added. do not belong to the original chaotic set, but are rather some-
how shifted. Making the same calculation as in Sec. Il, we
lll. MULTIPLICATIVE IMPULSIVE METHOD can get the maximum Lyapunov exponentay for the 2D
_ _ Poincaremap in this case. Figure 6 is the result when
The second method is defined by y=0-0.70, where\ . is negative whery is in the periodic

z=1-y?

Xi =Xi(1+ ) 5

And the perturbation is applied at the crossing with the Poin-
caresection, where; represents théth variable of the sys-
tem, andy; defines the strength of the pulse for variable
X; , that can be either positive or negative. In other words, the
conservative flow is controlled by changirgin such a way
that a proportional feedback is applied on the Poincae
tion in the form of pulses. The idea is how to choose suitable
values of they; so that the system becomes periodic and the -0.08
regular orbits are approximate to those of the original sys- 0 0.35 07
tem. This method has some difference from Ré&i.] where
an arbitrary time scale for the perturbations is introduced. Yl

Making the same Poincarsection and the same initial
point with the method in Sec. Il, we can write E@®) as FIG. 6. The relation between the maximum Lyapunov exponent
follows: Amax @nd the intensity of perturbatiop.

-0.04

}\max
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windows and high-periodic states, but positive wheis out z
of the range. It illustrates that the new creating periodic orbit 2
is stable. 0
-2
IV. EFFECTS OF NOISE AND CONCLUSION 5 y 2
0
In order that it can be effectively considered that a given (a) X 2
chaos suppression is useful, having in mind practical appli-
cations, one must first check whether the method is robust 4
against the presence of several sources of external noise. In 2
this section, we consider the Gaussian white n@is&ving 0
zero mean and a standard deviation equal to one, generated -2
by using the Box-Miler method[15]. We also introduce 2
additive noise in the form, 0 1 % 5 y
(b) 3 )
X =X+ pé, (7) o o .
FIG. 7. Effect of noise in the presence of multiplicative noise.
TS L (a) The stabilized period-1 orbit for additive impulsive method cor-
and multiplicative noise in the form, responding to Fig. 3, where the intensity of noise isX110™3; (b)
, the stabilized period-2 orbit for multiplicative impulsive method
X =xi(1+pé), ) corresponding to Fig. (8), where the intensity of noise is

5.0x 1074
wherep denotes the intensity of external noise. This noise is
applied at each Runge-Kutta integration step. system variables, where the first is independent of the posi-
Figure 7a) shows the result obtained by considering thetion of the system on the Poincasection.
presence of multiplicative noise for the period-1 in Fig. 3, The possibility of choosing different periodic behaviors
and Fig. 7b) shows the result obtained by considering thewithin these methods has been shown. For the multiplicative
presence of multiplicative noise for period-2 in Figah For  impulsive method, the periodic orbit can be controlled by
the case of additive noise, it is just the same. Comparing Figonly adding perturbation to one variable, while for the addi-
7(a) with Fig. 3, and Fig. th) with Fig. 5@ without noise, tive impulsive method, the periodic orbit can only be con-
respectively, we can see that the orbits having noise becomeolled by adding perturbations to two variables at the same
rough, but they remain within a small region surrounding thetime. Furthermore, for producing a stable periodic orbit the
noise-free orbit and do not wander over thg plane. So intensities of perturbation applied between multiplicative and
they are still periodic. This shows that the periodic impulsiveadditive fashion are different. So the results somewhat de-
method is robust against weak external noise. pendent on the nature of the perturbation. On the other hand,
In conclusion, two versions of chaos suppression methodshis paper has shown its robustness under the presence of
of conservative flow through changes in the system variablesome source of external noise. The negative maximum

have been discussed and applied to cAs&\lthough this
method was first presented for the dissipative sysféin-
13], our results show that it is effective in conservative flow.

The methods work by reducing the system dimensionality

through a suitably chosen Poincamess section of the sys-

tem, i.e., a plane that is perpendicular to the flow. Two ver-

Lyapunov exponents illustrate that the periodic orbits created
by the periodic impulsive methods are stable.
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